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modulation of calcium release from intracellular stores. In-
triguingly, our independent genetic analysis of Parkin, DJ-1, 
PINK1 and LRRK2 showed a common defect in activity-de-
pendent dopamine release caused by PD-linked mutations 
in these genes. Together, our genetic studies suggest that 
presynaptic dysfunction might be a converging early patho-
genic event before neurodegeneration in AD and PD. 

 Copyright © 2010 S. Karger AG, Basel 

 Alzheimer’s disease (AD) is the most common form of 
dementia and neurodegenerative disorder. AD is charac-
terized clinically by progressive memory loss and dete-
rioration of cognitive functions, and neuropathologically 
by extracellular amyloid plaques, intracellular neurofi-
brillary tangles, and synaptic and neuronal loss. Preseni-
lins (PS1 and PS2) are the major causative genes of early-
onset ( ! 65 years of age) familial AD and harbor  � 90% of 
FAD mutations identified to date. PS are essential com-
ponents of  � -secretase, a multi-subunit protease complex 
that catalyzes the intramembranous cleavage of a number 
of type I transmembrane proteins, including Notch and 
the amyloid precursor protein. Notch is a key physiologi-
cal substrate of  � -secretase, as evidenced by similar de-
velopmental phenotypes exhibited by PS and Notch mu-
tant mice [reviewed in  1 ], and the dependence of Notch 
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 Abstract 

 Mutations in several causative genes have been linked to 
monogenic forms of Alzheimer’s disease (AD) or Parkinson’s 
disease (PD). To look for possible common pathogenic mech-
anisms underlying age-related neurodegeneration in AD 
and PD, we employed genetic approaches to investigate sys-
tematically the roles of these gene products (e.g. presenilins 
(PS) for AD; Parkin, DJ-1, PINK1 and LRRK2 for PD) in the 
mouse brain, especially in neural circuits that are particu-
larly vulnerable in AD or PD. Our series of genetic studies 
revealed that PS play cell type-specific roles in the develop-
ing brain with the most prominent function in the mainte-
nance of neural progenitor cells. In the adult cerebral cortex, 
where the pathogenesis of AD occurs, loss of PS results in 
progressive memory impairment and age-related neurode-
generation. Specifically, PS are involved in the regulation of 
long-term potentiation and NMDA receptor functions. Inter-
estingly, our further genetic dissection in the hippocampal 
Schaeffer collateral pathway highlighted the importance of 
presynaptic PS in the activity-dependent regulation of glu-
tamate release and long-term potentiation induction via 
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signaling on the  � -secretase-mediated release of its intra-
cellular domain  [2, 3] .

  PS play important roles during embryonic develop-
ment.  PS1  –/–  mice exhibit perinatal lethality and somito-
genesis defects  [4, 5] , while mice deficient for both PS1 
and PS2 die before embryonic day 9.5 and display early 
patterning defects  [6] . Our investigations of PS function 
in neural development revealed essential roles for PS in 
maintenance of neural progenitor cells, differentiation 
and migration of postmitotic neurons and generation of 
radial glia  [1, 4, 7–9] . PS1 also regulates neuronal migra-
tion in a non-cell-autonomous manner by controlling 
proliferation of meningeal fibroblasts, which in turn af-
fects the survival of Cajal Rezius neurons, pioneer neu-
rons that are important for proper neuronal migration 
 [8] . PS regulate these processes primarily through the 
Notch signaling pathway  [1–3, 7, 10] . However, it is un-
clear whether Notch is the key functional mediator of PS 
in the adult brain.

  To investigate the role of PS in synaptic function in the 
adult cerebral cortex, which is the most relevant experi-
mental system for the investigation of the pathogenesis of 
AD, we generated a viable  PS1  conditional knockout, in 
which expression of PS1 is selectively eliminated in excit-
atory pyramidal neurons of the forebrain beginning at 
postnatal day  � 18  [11] . PS is normally expressed highly 
in pyramidal neurons of the cerebral cortex. This hypo-
morphic  PS  mutant mouse exhibits a specific but mild 
deficit in spatial memory  [11] . Synaptic transmission and 
plasticity in the hippocampal CA3-CA1 synapse, how-
ever, are normal  [11] . Analysis of conditional  PS -null 
mice lacking both PS1 and PS2 in the postnatal forebrain 
revealed impairments in hippocampal memory and long-
term potentiation (LTP) prior to any neuropathological 
changes, demonstrating a requirement for PS in normal 
synaptic plasticity and memory  [12] . More specifically, 
we found a selective reduction in NMDA receptor-medi-
ated responses and synaptic levels of NMDA receptors 
and  � CaMKII in mutant mice. Furthermore, in the ab-
sence of PS, levels of CBP and transcription of CREB/CBP 
target genes are reduced  [12, 13] , even though subse-
quently we found that CREB-mediated transcription is 
regulated indirectly by PS  [14] . Strikingly,  PS  cDKO mice 
develop in an age-dependent manner synaptic, dendritic 
and neuronal degeneration with accompanying astrogli-
osis and hyperphosphorylation of tau, demonstrating an 
essential role for PS in neuronal survival  [12, 15] . Fur-
thermore, PS promote memory and neuronal survival in 
a  � -secretase-dependent manner, as conditional inacti-
vation of nicastrin, another component of the  � -secretase 

complex, in the adult cerebral cortex similarly resulted in 
progressive memory impairment and neurodegeneration 
 [16] . Based on these in vivo findings and a large number 
of reports on the effects of FAD-linked mutations in cul-
ture and in vitro systems as well as in  C. elegans , we pro-
posed that PS mutations may cause dementia and neuro-
degeneration in AD via a partial loss-of-function mecha-
nism  [17] . The fact that synaptic impairments precede 
progressive neurodegeneration suggests that synaptic 
dysfunction caused by loss of PS function promotes sub-
sequent neuronal degeneration.

  To determine the precise synaptic site of PS function, 
we performed a systematic genetic analysis through the 
restriction of PS inactivation to hippocampal CA1 or 
CA3 neurons  [18] . This strategy permitted analysis of the 
effects of PS inactivation in either presynaptic or post-
synaptic neurons of the Schaeffer collateral pathway. We 
found that LTP induced by theta burst stimulation is de-
creased after presynaptic but not postsynaptic deletion of 
PS. Moreover, presynaptic but not postsynaptic inactiva-
tion of PS impairs short-term plasticity and synaptic fa-
cilitation. The probability of evoked glutamate release, 
measured with the open-channel NMDA receptor antag-
onist MK-801, is reduced by presynaptic inactivation of 
PS. Strikingly, depletion of calcium internal stores by 
thapsigargin or inhibition of calcium release from these 
stores by ryanodine receptor inhibitors mimics and oc-
cludes the effects of presynaptic PS inactivation. Collec-
tively, our genetic and electrophysiological studies dem-
onstrate that loss of PS function impairs LTP induction 
and glutamatergic neurotransmitter release by a presyn-
aptic mechanism. These findings, which distinguish un-
equivocally between presynaptic and postsynaptic func-
tions of PS, raise the possibility that presynaptic mecha-
nisms may play a primary role in AD pathophysiology. In 
support of this hypothesis, PS are localized to presynaptic 
terminals  [18] , and amyloid precursor protein C-terminal 
fragments, precursors of A � , accumulate in presynaptic 
terminals of  PS1  conditional knockout mice  [19] .

  Parkinson’s disease (PD) is the most common move-
ment disorder characterized by resting tremor, rigidity 
and bradykinesia. These clinical features are thought to 
result from reduced dopaminergic input to the striatum, 
which is caused by the loss of dopaminergic neurons in 
the substantia nigra. The occurrence of PD is largely spo-
radic, but clinical syndromes resembling sporadic PD 
have been linked to mutations in at least 5 distinct genes 
 (  �  -synuclein, parkin, DJ-1, PINK1  and  LRRK2) . The re-
cessive inheritance mode of the mutations and the exis-
tence of large deletions in the  parkin ,  DJ-1  and  PINK1  
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genes indicate a loss-of-function pathogenic mechanism. 
Parkin can function as an E3 ubiquitin ligase  [20–23]  or 
as a transcription regulator  [24] . DJ-1 itself can be oxi-
dized, thus protecting cells from oxidative damage  [25, 
26] . PINK1 is a protein kinase localized in the mitochon-
drion and other subcellular compartments  [27–30] . Our 
previous generation and multidisciplinary analysis of 
 parkin  –/– ,  DJ-1  –/–  and  PINK1  –/–  mice have demonstrated 
that each of these gene products is required for normal 
dopaminergic function and evoked dopamine release in 
nigrostriatal terminals  [31–34] . Furthermore, inactiva-
tion of each or all three of these recessive PD genes does 
not cause dopaminergic neurodegeneration  [31, 33–35] . 
In addition, our studies have further shown that loss of 
PINK1 or Parkin impairs mitochondrial function  [36, 
37] . A role for PINK1 and Parkin in mitochondria is also 
supported by genetic studies in  Drosophila   [38–42] . Thus, 
two converging cellular pathogenic mechanisms have 
emerged from genetic studies of recessive parkinsonism 

 [43] . Specifically, presynaptic dopaminergic dysfunction 
in evoked release may be a central pathogenic precursor 
before leading to frank dopaminergic neuron loss in 
PD.

  In summary, our genetic approaches to the studies of 
AD and PD  [44]  have uncovered a novel pathogenic 
mechanism, suggesting that defects in presynaptic neu-
rotransmitter release may represent a convergent mecha-
nism leading to neurodegeneration in affected circuits in 
AD and PD. Therapeutic strategies directed toward re-
storing normal neurotransmitter release may be effective 
in combating circuit dysfunction and neurodegeneration 
in these disorders.
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